Part Number Hot Search : 
XF45061 SGA3263Z 8SW68M 8A682 2MBI1 IRF74 START420 PTH050
Product Description
Full Text Search
 

To Download TLWBG7600 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TLW.76..
Vishay Telefunken
TELUXTM
Color Red Yellow True Green Blue Green Blue White Type TLWR76.. TLWY76.. TLWTG76.. TLWBG76.. TLWB76.. TLWW76.. Technology AlInGaP on GaAs AlInGaP on GaAs InGaN on SiC InGaN on SiC InGaN on SiC InGaN / YAG on SiC Angle of Half Intensity o 30 30 30 30 30 30
Description
The TELUXTM series is a clear, non diffused LED for high end applications where supreme luminous flux is required. It is designed in an industry standard 7.62 mm square package utilizing highly developed (AS) AllnGaP and InGaN technologies. The supreme heat dissipation of TELUXTM allows applications at high ambient temperatures. All packing units are binned for luminous flux and color to achieve best homogenous light appearance in application.
16 012
Features
D D D D D
Utilizing (AS) AllnGaP and InGaN technologies High luminous flux Supreme heat dissipation: RthJP is 90 K/W High operating temperature: Tj up to + 125 C Type TLWR meets SAE and ECE color requirements
D Luminous flux and color categorized for each
tube
D Small mechanical tolerances allow precise usage
of external reflectors or lightguides
D TLWR types additionally forward voltage
categorized
D Packed in tubes for automatic insertion
Applications
Exterior lighting Dashboard illumination Tail-, Stop - and Turn Signals of motor vehicles Replaces incandescant lamps Traffic signals and signs
Document Number 83138 Rev. A5, 10-May-00
www.vishay.de * FaxBack +1-408-970-5600 1 (13)
TLW.76..
Vishay Telefunken Absolute Maximum Ratings
Tamb = 25_C, unless otherwise specified TLWR76.. ,TLWY76.. Parameter Reverse voltage DC forward current Surge forward current Power dissipation Junction temperature Operating temperature range Storage temperature range Soldering temperature Test Conditions IR = 10mA Tamb 85C 85 C tp 10 ms Tamb 85C 85 C Type TLWR76 TLWR76.. TLWY76.. TLWY76 Symbol Value Unit VR 10 V IF 70 mA IFSM 1 A S PV 187 mW Tj 125 C Tamb -40 to +110 C Tstg Tsd -55 to +110 260
Thermal resistance junction/ambient
t 5 s, 1.5 mm from body preheat temperature 100C/30sec. with cathode heatsink of 70 mm2
C C
RthJA
200
K/W
Tamb = 25_C, unless otherwise specified TLWTG76.. ,TLWBG76.. ,TLWB76.. ,TLWW76.. Parameter Reverse voltage g DC forward current Surge forward current g IR = 10mA m Tamb 50C 50 C tp 10 ms m Test Conditions Type TLWTG76.. TLWTG76 TLWBG76.. TLWBG76 TLWB76.. TLWB76 TLWW76.. TLWW76 TLWTG76.. Power dissi ation dissipation Tamb 50C 50 C TLWBG76.. TLWB76.. TLWW76.. PV PV Tj Tamb t 5 s, 1.5 mm from body preheat temperature 100C/30sec. with cathode heatsink of 70 mm2 Tstg Tsd RthJA 230 255 100 -40 to +100 -55 to +100 260 200 mW mW C Symbol VR IF IFSM S Value 5 50 01 0.1 Unit V mA A
Junction temperature Operating temperature range Storage temperature range Soldering temperature Thermal resistance junction/ambient
C C C
K/W
www.vishay.de * FaxBack +1-408-970-5600 2 (13)
Document Number 83138 Rev. A5, 10-May-00
TLW.76..
Vishay Telefunken Optical and Electrical Characteristics
Tamb = 25_C, unless otherwise specified Red (TLWR76.. ) Parameter Total flux Luminous intensity/ Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Test Conditions Type Symbol Min 1500 Typ 2100 0.8 616 624 30 75 2.2 20 17 Max 3000 Unit mlm mcd/ mlm nm nm deg deg V V pF
fV ld lp
IV/fV IF = 70 mA, RthJA=200 K/W mA 200 611
634
90 % of Total Flux Captured IF = 70 mA, RthJA=200 K/W IR = 10 mA VR = 0, f = 1 MHz
0.9V VF VR Cj
1.83 10
2.67
Yellow (TLWY76.. ) Parameter Total flux Luminous intensity/ Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Test Conditions Type Symbol
fV ld lp
Min 1000
IV/fV IF = 70 mA, RthJA=200 K/W mA 200 585
Typ 1400 0.8 590 594 30 75 2.1 15 32
Max 2400
597
90 % of Total Flux Captured IF = 70 mA, RthJA=200 K/W IR = 10 mA VR = 0, f = 1 MHz
0.9V VF VR Cj
1.83 10
2.67
Unit mlm mcd/ mlm nm nm deg deg V V pF
True Green (TLWTG76.. ) Parameter Total flux Luminous intensity/ Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Test Conditions Type Symbol
fV ld lp
Min 630
IV/fV IF = 50 mA, RthJA=200 K/W mA 200 509
Typ 900 0.8 521 520 30 75 4.2 10 50
Max 1800
529
90 % of Total Flux Captured IF = 50 mA, RthJA=200 K/W IR = 10 mA VR = 0, f = 1 MHz
0.9V VF VR Cj
4.7
5
Unit mlm mcd/ mlm nm nm deg deg V V pF
Document Number 83138 Rev. A5, 10-May-00
www.vishay.de * FaxBack +1-408-970-5600 3 (13)
TLW.76..
Vishay Telefunken
Blue Green (TLWBG76.. ) Parameter Total flux Luminous intensity/ Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Test Conditions Type Symbol Min 400 Typ 700 0.8 505 503 30 75 4.2 10 50 Max 1250 Unit mlm mcd/ mlm nm nm deg deg V V pF
fV ld lp
IV/fV IF = 50 mA RthJA=200 K/W 200 mA, 492
510
90 % of Total Flux Captured IF = 50 mA, RthJA=200 K/W IR = 10 mA VR = 0, f = 1 MHz
0.9V VF VR Cj
4.7
5
Blue (TLWB76.. ) Parameter Total flux Luminous intensity/ Total flux Dominant wavelength Peak wavelength Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Test Conditions Type Symbol
fV ld lp
Min 200
IV/fV IF = 50 mA RthJA=200 K/W mA, 200 462
Typ 330 0.8 470 465 30 75 4.3 10 50
Max 630
476
90 % of Total Flux Captured IF = 50 mA, RthJA=200 K/W IR = 10 mA VR = 0, f = 1 MHz
0.9V VF VR Cj
4.7
5
Unit mlm mcd/ mlm nm nm deg deg V V pF
White (TLWW76.. ) Parameter Total flux Luminous intensity/ Total flux Color temperature Angle of half intensity Total included angle Forward voltage Reverse voltage Junction capacitance Test Conditions Type Symbol
fV
Min 400
, IF = 50 mA, RthJA=200 K/W
IV/fV TK 0.9V VF VR Cj
Typ 650 0.8 5500 30 75 4.3 10 50
Max 1250
90 % of Total Flux Captured IF = 50 mA, RthJA=200 K/W IR = 10 mA VR = 0, f = 1 MHz
5.1
5
Unit mlm mcd/ mlm K deg deg V V pF
www.vishay.de * FaxBack +1-408-970-5600 4 (13)
Document Number 83138 Rev. A5, 10-May-00
TLW.76..
Vishay Telefunken Typical Characteristics (Tamb = 25_C, unless otherwise specified)
200 PV - Power Dissipation ( mW ) 175 150 125 100 75 50 25 0 0
15982
60 50 40 30 20 10 RthJA=200K/W 0 20 40 60 80 100 120
16067
Red Yellow
I F - Forward Current ( mA )
Blue Blue Green True Green White
RthJA=200K/W
0
20
40
60
80
100
120
Tamb - Ambient Temperature ( C )
Tamb - Ambient Temperature ( C )
Figure 1 Power Dissipation vs. Ambient Temperature
100 Red Yellow I F - Forward Current ( mA ) 80 60 40 20 RthJA=200K/W 0 0
15983
Figure 4 Forward Current vs. Ambient Temperature
10000 IF - Forward Current ( mA ) Red Yellow tp/T=0.01 Tamb 0.02 0.05 0.1 100 1 10 0.5 0.2
v85C
1000
20
40
60
80
100
120
16010
1 0.01
0.1
1
10
100
Tamb - Ambient Temperature ( C )
tp - Pulse Length ( ms )
Figure 2 Forward Current vs. Ambient Temperature
250 200 175 150 125 100 75 50 25 0 0
16066
Figure 5 Forward Current vs. Pulse Length
0 I v rel - Relative Luminous Intensity 10 20 30
225 PV - Power Dissipation ( mW ) Blue Blue Green True Green White
40 1.0 0.9 0.8 0.7 50 60 70 80 0.6 0.4 0.2 0 0.2 0.4 0.6
RthJA=200K/W 20 40 60 80 100 120
Tamb - Ambient Temperature ( C )
16006
Figure 3 Power Dissipation vs. Ambient Temperature
Figure 6 Rel. Luminous Intensity vs. Angular Displacement
Document Number 83138 Rev. A5, 10-May-00
www.vishay.de * FaxBack +1-408-970-5600 5 (13)
TLW.76..
Vishay Telefunken
100 80 % Total Luminous Flux 70 60 50 40 30 20 10 0 0
16005
1.8
FVrel - Relative Luminous Flux
90
1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 -40 -20
Red
IF = 70 mA
25
50
75
100
125
15976
0
20
40
60
80
100
Total Included Angle (Degrees)
Tamb - Ambient Temperature ( C )
Figure 7 Percentage Total Luminous Flux vs. Total Included Angle (Degrees)
230 I Spec- Specific Luminous Flux 220 210 RthJA in K/W 200 190 180 170 160 0
16009
Figure 10 Rel. Luminous Flux vs. Ambient Temperature
Padsize 8 mm2 per Anode Pin
Red 1.0
50
100
150
200
250
300
15980
0.1 1
10 IF - Forward Current ( mA )
100
Cathode Padsize in mm2
Figure 8 Thermal Resistance Junction Ambient vs. Cathode Padsize
100 90 I F - Forward Current ( mA ) 80 70 60 50 40 30 20 10 0 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
15974
Figure 11 Specific Luminous Flux vs. Forward Current
10.00
Red I Vrel- Relative Luminous Flux
Red 1.00
0.10
0.01 1
15978
10 IF - Forward Current ( mA )
100
VF - Forward Voltage ( V )
Figure 9 Forward Current vs. Forward Voltage
Figure 12 Relative Luminous Flux vs. Forward Current
www.vishay.de * FaxBack +1-408-970-5600 6 (13)
Document Number 83138 Rev. A5, 10-May-00
TLW.76..
Vishay Telefunken
1.2 Red IF = 70 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 570 580 590 600 610 620 630 640 650 660 670
I Vrel- Relative Luminous Intensity
Yellow I Spec- Specific Luminous Flux 1.0
16007
l - Wavelength ( nm )
0.1 1
15981
10 IF - Forward Current ( mA )
100
Figure 13 Relative Luminous Intensity vs. Wavelength
100 90 I F - Forward Current ( mA ) 80 70 60 50 40 30 20 10 0 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4
15975
Figure 16 Specific Luminous Flux vs. Forward Current
10.00
Yellow I Vrel- Relative Luminous Flux
Yellow
1.00
0.10
0.01 1
15979
10 IF - Forward Current ( mA )
100
VF - Forward Voltage ( V )
Figure 14 Forward Current vs. Forward Voltage
2.0 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 -40
15977
Figure 17 Relative Luminous Flux vs. Forward Current
1.2 Yellow IF = 70 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 540 550 560 570 580 590 600 610 620 630 640
-20
0
20
40
60
80
100
16008
I Vrel- Relative Luminous Intensity
FVrel - Relative Luminous Flux
1.8
Yellow
IF = 70 mA
Tamb - Ambient Temperature ( C )
l - Wavelength ( nm )
Figure 15 Rel. Luminous Flux vs. Ambient Temperature
Figure 18 Relative Luminous Intensity vs. Wavelength
Document Number 83138 Rev. A5, 10-May-00
www.vishay.de * FaxBack +1-408-970-5600 7 (13)
TLW.76..
Vishay Telefunken
100 90 I F - Forward Current ( mA ) 80 70 60 50 40 30 20 10 0 2.5
16037
10.00 True Green I Vrel- Relative Luminous Flux True Green 1.00
0.10
3.0
3.5
4.0
4.5
5.0
5.5
16039
0.01 1
10 IF - Forward Current ( mA )
100
VF - Forward Voltage ( V )
Figure 19 Forward Current vs. Forward Voltage
1.8
Figure 22 Relative Luminous Flux vs. Forward Current
1.2 True Green IF = 50 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 460 480 500 520 540 560 580 600 620
1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 -40 -20 0 20 40 60 80 100
I Vrel- Relative Luminous Intensity
FVrel - Relative Luminous Flux
1.6
True Green
IF = 50 mA
16056
Tamb - Ambient Temperature ( C )
16068
l - Wavelength ( nm )
Figure 20 Rel. Luminous Flux vs. Ambient Temperature
Figure 23 Relative Luminous Intensity vs. Wavelength
100
True Green I Spec- Specific Luminous Flux I F - Forward Current ( mA ) 1.0
90 80 70 60 50 40 30 20 10 0 2.5
16058
Blue Green
0.1 1
16038
10 IF - Forward Current ( mA )
100
3.0
3.5
4.0
4.5
5.0
5.5
VF - Forward Voltage ( V )
Figure 21 RSpecific Luminous Flux vs. Forward Current
Figure 24 Forward Current vs. Forward Voltage
www.vishay.de * FaxBack +1-408-970-5600 8 (13)
Document Number 83138 Rev. A5, 10-May-00
TLW.76..
Vishay Telefunken
1.8 I Vrel- Relative Luminous Intensity 100
16070
FVrel - Relative Luminous Flux
1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 -40 -20
Blue Green
IF = 50 mA
0
20
40
60
80
1.2 Blue Green IF = 50 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 440 460 480 500 520 540 560 580 600
16061
Tamb - Ambient Temperature ( C )
l - Wavelength ( nm )
Figure 25 Rel. Luminous Flux vs. Ambient Temperature
Figure 28 Relative Luminous Intensity vs. Wavelength
100
Blue Green I Spec- Specific Luminous Flux I F - Forward Current ( mA ) 1.0
90 80 70 60 50 40 30 20 10 0 2.5
16040
Blue
0.1 1
16059
10 IF - Forward Current ( mA )
100
3.0
3.5
4.0
4.5
5.0
5.5
VF - Forward Voltage ( V )
Figure 26 Specific Luminous Flux vs. Forward Current
10.00
Figure 29 Forward Current vs. Forward Voltage
1.8
FVrel - Relative Luminous Flux
I Vrel- Relative Luminous Flux
Blue Green 1.00
1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 -40 -20
Blue
IF = 50 mA
0.10
0.01 1
16060
10 IF - Forward Current ( mA )
100
16057
0
20
40
60
80
100
Tamb - Ambient Temperature ( C )
Figure 27 Relative Luminous Flux vs. Forward Current
Figure 30 Rel. Luminous Flux vs. Ambient Temperature
Document Number 83138 Rev. A5, 10-May-00
www.vishay.de * FaxBack +1-408-970-5600 9 (13)
TLW.76..
Vishay Telefunken
100 Blue I Spec- Specific Luminous Flux I F - Forward Current ( mA ) 1.0 90 80 70 60 50 40 30 20 10 0 2.5
16062
White
0.1 1
16041
10 IF - Forward Current ( mA )
100
3.0
3.5
4.0
4.5
5.0
5.5
VF - Forward Voltage ( V )
Figure 31 Specific Luminous Flux vs. Forward Current
100 80 70 60 50 40 30 20 10 0 2.5
16040
Figure 34 Forward Current vs. Forward Voltage
1.8
FVrel - Relative Luminous Flux
90 I F - Forward Current ( mA )
Blue
1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0 -40 -20
White
IF = 50 mA
3.0
3.5
4.0
4.5
5.0
5.5
16065
0
20
40
60
80
100
VF - Forward Voltage ( V )
Tamb - Ambient Temperature ( C )
Figure 32 Forward Current vs. Forward Voltage
1.2 Blue IF = 50 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 400 420 440 460 480 500 520 540 560
Figure 35 Rel. Luminous Flux vs. Ambient Temperature
I Vrel- Relative Luminous Intensity
White I Spec- Specific Luminous Flux 1.0
16069
l - Wavelength ( nm )
0.1 1
16063
10 IF - Forward Current ( mA )
100
Figure 33 Relative Luminous Intensity vs. Wavelength
Figure 36 Specific Luminous Flux vs. Forward Current
www.vishay.de * FaxBack +1-408-970-5600 10 (13)
Document Number 83138 Rev. A5, 10-May-00
TLW.76..
Vishay Telefunken
10.00 I Vrel- Relative Luminous Flux White 1.00 I Vrel- Relative Luminous Intensity 10 IF - Forward Current ( mA ) 100
16071
0.10
0.01 1
16064
1.2 White IF = 50 mA 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 400 450 500 550 600 650 700 750 800
l - Wavelength ( nm )
Figure 37 Rel. Luminous Flux vs. Ambient Temperature
Figure 38 Specific Luminous Flux vs. Forward Current
Document Number 83138 Rev. A5, 10-May-00
www.vishay.de * FaxBack +1-408-970-5600 11 (13)
TLW.76..
Vishay Telefunken Dimensions in mm
16004
www.vishay.de * FaxBack +1-408-970-5600 12 (13)
Document Number 83138 Rev. A5, 10-May-00
TLW.76..
Vishay Telefunken Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs ). The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA ) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423
Document Number 83138 Rev. A5, 10-May-00
www.vishay.de * FaxBack +1-408-970-5600 13 (13)


▲Up To Search▲   

 
Price & Availability of TLWBG7600

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X